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Abstract
Using the Peierls-extended Hubbard model and Hartree–Fock approximation,
the stability and dimerization of the ferromagnetic ground state of a
nanographite ribbon are investigated. For a given on-site Coulomb interaction
U , if the intersite Coulomb interaction V is larger than a critical value Vc, the
ferromagnetic ground state is unstable and a transition from the spin-density-
wave state to the charge-density-wave state occurs. On increasing the width of
the ribbon, the critical value Vc changes from Vc ≈ 0.5U to Vc ≈ 0.25U , which
are similar values to those in the one- and two-dimensional extended Hubbard
model, respectively. The on-site repulsion usually suppresses the dimerization
while the intersite repulsion can turn the dimerization on and off.

1. Introduction

For the last couple of decades, the synthesis of organic molecular ferromagnetic
compounds [1–5] has attracted considerable attention. Recently, the reports on carbon polymer
have stimulated renewed interest in carbon systems as possible new magnetic materials made
of light elements [6–8]. In highly oriented pyrolytic graphites (HOPGs), the magnetic ordering
was obtained by proton irradiation. Kusakabe et al [9] proposed a simplified structure shown in
figure 1 to explain the spontaneous magnetism in nanographite ribbon. The carbon atoms are
monohydrogenated on the left edge and dihydrogenated on the right edge by proton irradiation.
The result of the local spin-density approximation shows that the magnetism originates from
the existence of the spin-polarized flatband.

In some carbon systems, electron–electron (e–e) interaction and electron–phonon (e–ph)
interaction play important roles in determining their properties [10–15]. For instance, the e–
ph interaction can have significant effects on the property of the ground state and can induce
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Figure 1. A hydrogenated nanographite ribbon with M zigzag chains each with N carbon atoms.
Open circles denote hydrogen atoms and other sites represent carbon atoms. The dashed rectangle
denotes a unit cell. The arrow labels the direction of chains.

nonlinear excitations (solitons, polaron). In previous work [16], using the Peierls–Hubbard
model, one of the authors has investigated the ferrimagnetism and perfect dimerization in the
ground state. A domain wall and the spin soliton in the excited state are also predicted. Because
the Coulomb interaction is a long-range interaction, it is important to clarify the effects of
long-distance e–e interactions on ferromagnetism in real materials. For carbon nanotubes, a
metal–insulator Hubbard transition driven by Coulomb repulsion has been found [11]. Due to
the interplay of on-site and intersite Coulomb repulsions U and V , there exist three regions
separating a metallic or semimetallic phase and charge-density-wave (CDW) and spin-density-
wave (SDW) insulating phases. In nonmagnetic nanographite ribbons with zigzag edges,
Yamashiro et al [12] found a charge-polarized state with a finite electric dipole moment caused
by the interplay between the nearest-neighbour (NN) Coulomb interaction and the edge states.
This charge-polarized state competes with the peculiar spin-polarized state caused by the on-
site Coulomb interaction.

In this paper, using the Peierls-extended Hubbard model (PEHM) we study the stability
and dimerization of the ferromagnetic ground state for the nanographite ribbon in figure 1. We
focus on the effects of the NN intersite Coulomb interaction V . It is shown that as V increases
to a critical value the ferromagnetic ground state is unstable and the system transits from the
SDW state to the CDW state. As the width of the ribbon increases, this critical value changes
from the result U ≈ 2V from the one-dimensional extended-Hubbard model (EHM) [17, 18]
to U ≈ 4V from the two-dimensional EHM [19]. As V is enhanced the dimerization first
increases to a maximum then reduces to zero. In the one-dimensional EHM, there exists a
novel narrow region with bond-order-wave (BOW) phase between the well-known CDW and
SDW phase in the ground-state phase diagram [17, 18]. In our PEHM, we also find similar
behaviour of the dimerization. For a relative small e–ph coupling, the dimerization which does
not exist in the absence of V may appear again in a range of V .

2. Model and computational method

For the nanographite ribbon shown in figure 1, the Peierls-extended Hubbard Hamiltonian is
defined as

H = Ht + HU + HV + Hel (1)
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Ht = −
∑

〈li,k j〉,σ
tli,k j (c

†
l,i,σ ck, j,σ + H.c.) (2)

HU = U
∑

l,i

nl,i,↑nl,i,↓ (3)

HV = V
∑

〈li,k j〉
nl,i nk, j (4)

Hel = κ

2

N∑

i=1

M−1∑

l=1

(ul,i − ul,i+1)
2, (5)

where Ht is the tight-binding Hamiltonian, HU is the on-site Hubbard repulsion, HV is the
intersite Coulomb repulsion and Hel is the elastic energy due to the lattice distortion along
each zigzag chain. Because there is no period in the direction perpendicular to the chain, the
interchain distortion does not reduce the total energy of the system as the dimerization in the
one-dimensional system does. On the other hand, the two zigzag edges in the nanographite
ribbon are not equivalent. Therefore the uncertain interchain deformation does not benefit the
energy and is not considered in our model.

In equations (2)–(5), c†
l,i,σ (cl,i,σ ) and nl,i,σ are the creation (annihilation) and number

operators of electron with spin σ = ↑,↓ on the i th site in the lth chain, respectively. nl,i =
nl,i,↑ + nl,i,↓ . 〈li, k j〉 labels the nearest neighbours (NNs). tli,k j denotes the hopping integral.
U is the on-site e–e interaction, V is the nearest-neighbour e–e interaction. κ is the elastic
constant of the lattice. ul,i is the displacement of the i th site in the lth chain. In figure 1, we
consider M zigzag chains each with N carbon atoms. The hopping integral in Ht is labelled in
figure 1. The NN hopping integral along each chain is t = t0 − γ (ul,i − ul,i+1), where γ is the
electron–phonon coupling constant. t2 denotes the interchain hopping between the (M − 1)th
chain and the right edge (the M th chain) while t1 represents other NN interchain hopping.

Within the Hartree–Fock approximation (HFA), the e–e interaction in the Hamiltonian (1)
can be written as

nl,i,σ nk, j,σ ′ = 〈nl,i,σ 〉nk, j,σ ′ + 〈nk, j,σ ′ 〉nl,i,σ − 〈nl,i,σ 〉〈nk, j,σ ′ 〉. (6)

Following the procedure in [16], we obtain the self-consistent equations

−
∑

〈li,k j〉
tli,k j Zσ

µ,k, j + U〈nl,i,−σ 〉Zσ
µ,l,i + V 〈nk, j 〉Zσ

µ,l,i = εσ
µ Zσ

µ,l,i (7)

〈nl,i,σ 〉 =
(occ)∑

µ

Zσ∗
µ,l,i Zσ

µ,l,i , (8)

where Zσ
µ,l,i is the expansion coefficient of the single-particle wavefunction of the system. εσ

µ is
the µth eigenvalue of the single-particle state. 〈nl,i,σ 〉 is the average with respect to the ground
state, and (occ) means those states occupied by electrons.

In following discussion, we define a dimensionless lattice deformation

yl,i = γ (ul,i − ul,i+1)/t0. (9)

yl,i can be obtained by minimizing the total energy

yl,i = 2λ

((occ)∑

µ,σ

Zσ
µ,l,i Zσ

µ,l,i+1 − 1

N

(occ)∑

i,µ,σ

Zσ
µ,l,i Zσ

µ,l,i+1

)
, (10)

where the periodic boundary condition has been used for each zigzag chain. λ = γ 2/t0κ is a
dimensionless e–ph coupling constant.
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Figure 2. Band structure of the system for U = 2, V = 0.2, λ = 0.6, M = 3.

3. Results and discussion

For a nanographite ribbon consisting of M zigzag chains each with N carbon atoms, we
numerically solve the self-consistent equations (7)–(10). We take the hopping integral t0 = 1
as the unit of energy. In the structure in figure 1, the interchain hopping t1 is smaller than the
intrachain hopping t0. The π electron at the right edge is relatively localized. As in [16], we
take t1 = 0.9 and t2 = 0.8. The band structure of the system with N = 60 and M = 3 is
shown in figure 2 for U = 2, V = 0.2 and λ = 0.6. The electron energy spectra contain five
down-spin energy bands and five up-spin energy bands since there are five sites in a unit cell.
In the ground state, the lowest three up-spin bands and two down-spin bands are filled so that
the total spin of the system is S = 1

2 per unit cell. Due to the energy gap between the highest
occupied energy level and the lowest unoccupied energy level, the ferromagnetic ground state
is stable.

As the intersite repulsion V increases, the energy gap is reduced. When V is greater than
a critical Vc, the gap disappears and the ferromagnetic ground state is unstable. Figure 3 shows
the phase diagram in the parameter space of U and V for the e–ph coupling λ = 0.6 and
different width of the ribbon M . Below the curves the ferromagnetic ground state is stable.
On increasing the width of the ribbon M , the critical Vc decreases. This means that if V is
considered the nearer the system approaches the two-dimensional one the more unstable the
ferromagnetic ground state becomes. We will give further discussion on this later.

Figures 4 and 5 show the charge density and spin density for U = 2, M = 5 and
λ = 0.6. When the intersite Coulomb is turned on, the charge density is redistributed
inhomogeneously. With increasing V , the charge density transfers from even sites (sites 2,
4, 6, 8) to odd sites. The charge transfer at the two edges is much larger than that in the
middle chains of the ribbon. This result can be understood since the sites at the edges are only
subjected to the repulsive interaction of one NN chain while the sites in the middle chains are
contemporaneously subjected to the Coulomb repulsion of two NN chains. Another feature in
figure 4 is that when V approaches Vc ≈ 0.75 the charge transfer is strongly enhanced by V .
On the other hand, figure 5 indicates that an antiferromagnetic correlation exists between the
NN sites. With increasing V , the spin density decreases and the antiferromagnetic correlation



Effects of intersite Coulomb interaction in nanographite ribbons 6277

Figure 3. Phase diagram in the parameter space of U and V for λ = 0.6 and different M.

Figure 4. Charge density at different sites in a unit cell versus V for U = 2, λ = 0.6 and M = 5.

weakens, especially at the two edges. Combining figures 4 and 5, we conclude that as the
intersite Coulomb V increases to its critical value Vc = 0.75, the charge distribution exhibits a
large polarization while the ferromagnetic state is unstable and the spin polarization is strongly
suppressed. This indicates that the system transits from the SDW state to the CDW state.

In the one-dimensional EHM, there exists a transition from the SDW state to the CDW
state at U ≈ 2V [17, 18]. Figure 3 shows that for a narrow nanographite ribbon (e.g. M = 3),
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Figure 5. Spin density at different sites in a unit cell versus V for U = 2, λ = 0.6 and M = 5.

the transition point is at U = 2.17V , which approaches the value for the one-dimensional case.
As the ribbon becomes wider, the antiferromagnetic correlation becomes weaker since the total
spin per unit cell is still S = 1/2 and the spin density at each site decreases. The required
intersite Coulomb to overcome this antiferromagnetic correlation decreases. Therefore, the
critical Vc in figure 3 is smaller for M = 5 and M = 7 than that for M = 3. In the
two-dimensional EHM, the transition from the SDW state to the CDW state is found near
U ≈ 4V [19]. The result in figure 3 indicates that with increasing the width M of the ribbon,
the critical value Vc approaches that in the two-dimensional EHM.

For the Peierls–Hubbard model, due to the interplay between the e–ph coupling λ and the
on-site repulsion U , the dimerization may appear in the first zigzag chain [16]. However, if
the intersite Coulomb is considered, the behaviour of the dimerization will change. Figure 6
shows the dimerization y1 = (−1)i y1,i versus V for different U , λ and M . If the dimerization
without V is large (see figure 6(a) for λ = 0.6), the dimerization hardly changes for small V
but reduces rapidly for large V . If the dimerization without V is small (see figure 6(a) for
λ = 0.585), with increasing V the dimerization first increases to a maximum then reduces to
zero. In particular, for relatively small λ (see figure 6(a) for λ = 0.58), the dimerization does
not exist for small V . As V increases continuously the dimerization may appear in a range of
V . For a narrow ribbon (e.g. M = 3) and not too large e–ph coupling, the dimerization always
disappears before the transition from the SDW state to the CDW state occurs. Certainly, the
dimerization is accompanied by the alternation of bond length. Hence this feature is similar
to that in the one-dimensional EHM, in which the BOW phase exists in a narrow range of V
between the CDW and SDW states. However, there is obvious difference between these two
models. For too small λ, the dimerization does not exist for any V while the BOW phase in the
one-dimensional EHM does not require e–ph coupling. The dimerization in the present PEHM
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Figure 6. Dimerization y1 versus V for different U , λ and M.

results from the interplay between λ, U and V while the BOW phase in the EHM exists in a
narrow region of U and V .

Comparing figure 6(a) with (b), one finds that for λ = 0.6, as U increases from 1.6 to
2.0 the dimerization disappears in the absence of V but emerges again in a range of V . This
indicates that the on-site repulsion usually suppresses the dimerization, while an appropriate
intersite repulsion is in favour of the dimerization. For wider nanographite (e.g. M = 5)
figures 6(c) and (d) show the dimerization versus V before the energy gap disappears. In these
cases, as V is enhanced the transition from SDW to CDW states occurs before the dimerization
reduces to zero. The HFA fails to exhibit the results after the disappearance of the gap because
of the uncertainty of the occupied states near the Fermi level in each iterative step. Comparing
figure 6(b) with (d), it is seen that for given U and λ, the maximum of the dimerization is
larger for a wider ribbon than for a narrow ribbon. This behaviour indicates that as the ribbon
becomes wider the effect of V is enlarged due to the change in the number of neighbours. A
similar enlargement effect with increasing dimension is also found in the transition from SDW
to CDW states, which occurs at V ≈ 0.5U and V ≈ 0.25U in the one- and two-dimensional
EHM, respectively.

In summary, for a nanographite ribbon, we have studied the effect of the intersite Coulomb
interaction on the stability of the ferromagnetic ground state and the dimerization. As the NN
Coulomb interaction increases to a critical value Vc, the ferromagnetic ground state is unstable
and a transition from the SDW state to the CDW state occurs. On increasing the width of
the ribbon, the critical value Vc changes from Vc ≈ 0.5U to Vc ≈ 0.25U , which are similar
values to those in the one- and two-dimensional EHM, respectively. The on-site repulsion
usually suppresses the dimerization while an appropriate intersite repulsion is in favour of the
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dimerization. In particular, the dimerization may appear in a range of V even if it does not exist
in the case of V = 0. This indicates that the NN intersite Coulomb can turn the dimerization
on off. The behaviour is similar to the effect of the intersite Coulomb on the BOW in the
one-dimensional EHM.
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